
A PROGRAM DOWNLOADER AND OTHER UTILITY SOFTWARE

FOR THE DATAC BUS MONITOR UNIT*

N87-22618

Stanley M. Novacki, III

Avionics Engineering Center

Department of Electrical and Computer Engineering

Ohio University

Athens, Ohio

*Published as Ohio University Technical Memorandum 92, July 1984.

113

A set of programs designed to facilitate software testing on the

DATAC Bus Monitor is described.

I • INTRODUCTION

The DATAC Bus Monitor Unit (BusMon) is a Z8000-Oased microcomputer

system designed to receive, interpret, and display selected data items

appearing on a DATAC Digital Data Bus. Software for the Bus Monitor Unit

is developed on a Tektronix 8550 Microprocessor Development System (MDS).

@nce a program is written and compiled to object code, it may be tested

asing the in-circuit emulation and memory-partitioning capabilities of the

8550. The in-circuit emulator allows the MDS to imitate the Z8000 pro-

cessor, giving the operator extensive control of the test system, while

memory partitioning allows the prototype system to utilize memory in the

8550 as though it were part of the target system's memory. This is a great

help in lab-testing of the prototype system because of the simplicity of

loading and running the test software.

Because of the size of the Tektronix hardware, it is somewhat cumber-

some to transport the entire MDS and the prototype system to a field

installation simply to test programs in situ. To make on-site testing

easier, a series of programs was developed to allow the Z8000 system,

running in a standalone mode, to receive program code via its RS232C ports

and ports on the host system, which stores the test program in a disk file.

Once the program design is finalized, another utility program allows the

Z8000 system to send the test software in ASCII form to a ProLog PROM

programmer, eliminating the need for an integral PROM programmer on the

MDS. These software tools are intended to simplify the development and

testing of the data acquisition, reduction, and display routines planned

for the DATAC Bus Monitor Unit.

II. IMPLEMENTATION

On the Tektronix 8550 MDS:

Once a program for the Z8000 system has been written and reduced to

machine code, it can be transferred to a DOS/50 disk file. DOS/50 is the

operating system currently in use on the MDS. The file format consists of

lines of ASCII characters in a format called Standard TEKHEX (figs. 1, 2). There

are two types of records in a TEKHEX file: data records and the

"null" or terminator record. The format for a data record begins with t_e

slash character "/" which denotes the start of a valid record. The slash

is followed by 4 hex digits which specify the absolute loading address for

the data contained in this record. Next are two hex digits which specify

the number of bytes of data contained in the record. The following two

digits form a nybble checksum of the load address and the datum count; that

is, each digit of the load address and byte count are added together. This

number, modulo 256, provides the first checksum. Following the checksum

comes the data bytes representing the actual machine code of the program.

After the data is the data nybble checksum. As with the first checksum,

this is the sum of the individual hex digits of the data, modulo 256. Each

record is terminated by an ASCII CR (0D hex). The last record in a TEKHEX

file is the "null" record, that is, one with a datum count of zero. An

address/byte-count checksum is still generated, usually with a zero value.

114

A file in this format can be sent to a slave system via RS232Ccom-
munications ports on the slave and the I_S. The host system will read a
record from the TEKHEXfile, send it to the prototype system, and wait for
a single ASCII token to indicate a good (ACK) or bad (NAK) reception. The
8550 uses the digits "0" as the ACKtoken and "7" as the NAKsymbol. If
the prototype system replies with an ACK,the MDSwill send the next
record, wait for the prompt for that record and so on until the entire file
is sent. If the prototype system fails to reconstitute the samechecksums
sent in the TEKHEXrecord, it will reply with the NAKtoken. The 8550 will
recognize this as a failed transmission and re-send the samerecord. The
8550 will continue to send the flagged record until the slave system elects
to abort the load operation with an abort message,which appears on the
8550 console and halts the load operation, or the numberof retries exceeds
a limit set by the host system operator. After all data records are sent,
followed by the null record, the 8550 exits from the load routines and and
resumes terminal emulation. From this point, the MDSmay simply be used as
a console device to the prototype and the program is run on the prototype.

On The Bus Monitor Unit:

The loader program for the Z8000-basedsystem (fig. 3; iisting i) is designed
to accept serial ASCII data TEKHEXformat, convert it to machine
code, and store it in the prototype system memory. The processor monitor
software for the Bus Monitor Unit provides serial I/0 routines which allow
it to transmit and receive blocks of ASCII data via serial port A, the
default console port, by using the Z8000System Call instruction, SC{_.
The Z8000 loader program begins by sending the ACKtoken to the host system
to indicate that it is ready to receive characters. The input operation of
SC #0 returns a string in memoryterminated by a carriage return. Once a
string has been read, the loader routine scans the input buffer to find the
"/" character to define the beginning of the record, if the slash does not
occur in the first 80 bytes, it is assumedthat part of the record was
lost; TEKHEXrecords do not usually exceed73 characters including the
terminating carriage return. The loader routine sends a NAKtoken to
request a re-send and waits for the next transmission.

Oncea record has been received and the slash found, the load address
and byte count are converted from ASCII representations to their actual
hexadecimal values. This is done by shifting the seven-bit-code for the
most-significant-digit of a data byte (i.e, a single ASCII character) to
the left by 4 bits, producing a datum of the form "x0" from "zx" in hex.
The next character ("zy"), the least-significant digit of the datum being
reconstituted, is logically ANDedwith OF hex to zero the high order bits,
leaving a "0y" pattern in hex. The loader then ORsthe two patterns
together, giving a byte of the form "xy". If the character being converted
is a numeric, the binary-coded decimal (BCD) representation of the number
and the least significant nybble match exactly and the conversion process
may proceed. If the hex character is an alphabetic, A-F, someadjustment
is needed because the 4 low-order bits of the ASCII characters A through F
do not correspond to the hexadecimal values A through F (I0 to 15 decimal).
In fact, the low-order nybble of ASCII characters A-F has the values i-6

115

in BCD. Because of the sequential value, we may correct these charac-

ters' codes to correspond to their actual value by adding 09 hex to the

character code before the masking process. This addition bumps the low-

order bits to a pattern corresponding to the binary representation of their

namesakes. With this correction, the characte=s A-F can then be processed

like the numerics 0-9. The alphabetic character adjustment is handled by

subroutine TSTNUM and the ASCll-to-hexadecimal conversion is performed by
ASCHEX.

Once the load address and byte count are reconstituted, the first

checksum is generated. If the computed and transmitted checksums do not

agree, a NAK token is sent and the Bus Monitor waits for a new

transmission. Otherwise, the program reconstitutes the data stream using

ASCHEX, stores it using the load address it generated earlier, and main-

tains a running checksum. After all data have been stored in the prot O -

type's RAM, the data checksum is reconstituted from the string buffer and

comoared with the calculated value. If a mismatch occurs, a NAK token is

sent and the Bus Monitor waits for the the same record to be retransmitted

from the host. Otherwise, it issues an ACK, waits for the next record, and

continues the load-and-store process until the entire file has been sent.

In the event 5 successive checksum errors occur, the Bus Monitor will abort

the load operation by sending an "Abort Load" record, whose message is

displayed on the system console (line 198 of listing i). When the null

record is received, the Z8000 returns to the resident monitor via SC #3.

No integrity check is performed on the checksum, since a transmission error

at this point doesn't affect any data that has been stored.

On the CP/M-Dased Bus Monitor Console System:

In field experiments, a DEC VT-180 will be used as the host for the

program down-loading in addition to being a data display/command input

device. The file down-loader (listing 2) is written in the "C" language

for the CP/M environment by Manx Software Systems. This loader contains

two deviations from the 8550 down-load procedure: one is that the VT-180

itself counts errors and exits on 5 successive errors; the other is that on

completion of fiie transmission, the loader is exited and the VT-180

returns to the CP/M command processor rather than to terminal mode.

Prolog PROM Programmer Support:

This utility can be thought of as a complement to the downioader

program for the Z8000. The program (listing 3) sends machine code from the

Bus Monitor Unit to a Prolog PROM Programmer equipped with an RS-232C

serial port. Two factors complicate this seemingly simple task: one is

that the serial port drivers for the PROM programmer expect to see only

ASCII data. The other is that the memory for a Z8000 system is organized

as 16-bit words. As yet, there are no 16-bit-wide memory devices being

manufactured. The designers of these microcomputer systems routinely solve

the latter problem by using 2 byte-wide RAMs or ROMs in parallel, one

device located at an even byte address, the other at the subsequent odd

address. The first "trick" is that we must read alternating memory loca-

tions (all even or all odd) addresses whe_ sending data to the programmer.

116

We will solve the former problem by a procedure which complements the

ASCHEX subroutine described earlier. The program produces two ASCII

characters from one hexadecimal byte by splitting the byte into high and

low-order nybbles and then shifting the high order nybble to the right 4

bit places. For example, byte "xy" becomes two bytes "0x" and "0y". For

the hexadecimal digits 0-9, we simply add 30 hex to each byte and we have

the ASCII character corresponding to the BCD digit. The hex digits A-F

again pose another problem: the ASCII collating sequence has specified

that the low-order nybbles of of the codes for the characters A-F are 1-6

decimal, not A-F hex. Further, the high order nybble of those letter

digits is a hex 4, not a 3, as is the case for the numeric characters. To

handle this case, the program tests the nybble being converted to see if it

lies in the range of A-F. If so, an adjuster of 07 hex is added to the

nybble first. This corrects the least significant digit to the proper

value and puts a i in the most significant digit. For example, to turn 0C

hex to 43 hex (the ASCII code for the letter "C") the following happens:

add 07 to OC giving 13 hex, then add 30 hex giving 43 hex, giving the

desired character code.

The PROLOG utility is usually used with the 8550 running in processor

emulation mode in the Bus Monitor system. A data rate of 2400 baud between

the test system and the PROM programmer is assumed. The programmer support

routine normally resides at address 4000 hex. If this conflicts with the

intended load address of the program being sent to the PROM programmer, the

support routine can be moved to another memory location. This is possible

because the utility program uses only relative addresses, excepting the I/O

port addresses which present no relocatability problems. Once the utility

program and the application program have been loaded into Bus Monitor

memory, the PROM programmer is set to receive the first block (even or odd)

of data. Using the 8550 emulator or the Resident Monitor, the following

CPU registers are initialized: RIO contains the address of the first byte

if the program being sent to the programmer, RII contains the address of

the last byte to be programmed, and RI2 contains a 0 if even-numbered bytes

are being ROMmed, and a 1 if odd-numbered bytes are being sent to the

programmer. Execution begins at the label GO; the "B" serial port on the

serial I/O card is used to send data to the PROM programmer, R9 points to

the machine code being processed. A pass is complete when R9 is greater

than RII, the stop address. For convenience, a breakpoint can be set at GO

+ 4C hex, so that RI2 can De toggled to send the second block of data bytes

without having to reset RI0 and RII. With RI2 readied for the next series

of data and the programmer fitted with a new chip, execution may De resumed

with a "GO" command, completing the programming process.

117

III. SUMMARY

The software described in this paper will facilitate the design and

testing of software for the DATAC Bus Monitor Unit. By providing a means

to simplify program loading, firmware generation, and subsequent testing of

programs, we can reduce the overhead involved in software evaluation and

use that time more productively in performance, analysis and improvement of

current software.

IV. ACKNOWLEDGMENTS

I would like to thank Mr. Kim Constantikes of Carnegie-Mellon

University, Mr. John Simmons of Tektronix, Inc., and Mr. Jim Ramsay and

Mr. Bill Lynn, both of Kentron International, for their support and

patience during the development of these programs.

V. BIBLIOGRAPHY

[I] Kernighan, Brian W. and Ritchie, Dennis M., "The C Programming

Language", Prentice-Hall, Inc.; 1978.

[2] Hancock, Les and Krieger, Morris, "The C Primer", McGraw-Hill Book

Company, New York; 1982.

[3] "8550 Series B Z8001/Z8002 Assembler Specifics", Tektronix, Inc.,

Beaverton, OR.

[4] "ProLog Series 90 PROM Programmer Operating Manual", ProLog Corp.,
Monterey, CA.

[5] "Aztec C II Users' Guide," Manx Software Systems, Shrewsbury, NJ;
1981.

118

Data

Record

/aaaa bb ac dd...dd dc
I I L_I II I J l_l

LOAD BYTE 1$t DATA 2nd
ADDRESS COUNT CHKSUM BYTES CHKSUM

<CR >

RECORD
TERMINATOR

Terminator

Record
/xxxx oo ac

I I I I I I

LOAD ZERO- CH KSUM
ADDRESS LENGTH

RECORD

Abort

Record
/Abort message text

Figure I. TEKHEX-format records used by BusMon loader program.

119

/ 1010080A21E462ABBC6E2F3270

/ 1018030D 103FB220

/ 101B000D

Figure 2. Sample TEKHEX file.

Figure 3. Z8000 loader outline.

120

APPENDIX A

LISTING 1

ASM ZBOO1/Z8002

V01.01-01 (8550)

I

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 FEO0

25

26 O000FEO0

27 O000FE04

28 O000FE54

29 O000FE5C
30

31

32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48 O000080E 53544420

54454848

4558204C
4F414445
5220

49
50 00000820
51 00000824

52 00000828

53 0000082E

54 00000834
55 00000836
56

57 00000838
58 0000083A

59 0000083E
60 00000842

61 00000846

62 00000848
63 0000084A

64 0000084 E

4

5O
8

8

80E R

3E
30

37

0D

2F

4DO8FEO0 R

4DO8FE02 R
4C05FEO1R
0000

4C05FE02 R
3E3E

8DC8
DF56

8CA8
210A0050

2109FE04 R
729AOA00

ABA0

EEFC

2101FE5C R
7FO0

01-0EC-83/08:48:48

; DATAC BUS MK)NITOR:

; LOADER FOR Z8000 PRCCESSOR INTERFACE TO DATAC SYSTEM

; AUTHOR: S.M. NOVACKI 2 SEPT 83

; REV 22 NOV 83: INCLUDES ERROR HANDLER- EXITS TO MONITOR

; M/_SRO DEFINITIONS HERE:

MA_SRO NYBSUM

LDB RL2,RH2 ;TRANSPOSE HEX DIGITS

SRAB RL2,#04 ;MAKE HOD THE LOD

AND R2,#0FOFH ;MASK OFF HO BITS

ADDB RH2,RL2 ;ADD NYBBLES W/O CARRY

;RH2 HOLDS NYBBLE CHECKSUM, TRANSFERRED TO RH7

ENOM

;THIS MACRO PERFOIRMS A TEST FOR CHECKSUM ERRORS, IF >5 THE LOAD IS ABORTED
MACRO ERRMSG

INC R13

CP R13,#5

JR UGT,ABRTLD

SET R12,#01

LDB ACZ,BU F, #N/E,

JR NEWSTR

ENDM

ORG

;I/0 STRING
AC_KBUF BL(X]K 4
INBUF BLOCK 80

TKHXI N BLOCK 8

TK INAK BL_ 8

ORO 080EH

;CONSTANT DEF IN IT IONS:

PRON_T EQU 3EH

ACK EQU 30H

NAK EQU 37H

RECEND EQU 0DH

RECMRK EQU 2FH

;COUNT NEW ERROR CX]CURRENCE

;REACH MAX# OF ERRORS?

;TCX) MANY ERRORS- RETURN TO MONITOR

;SET 'OLD STRING, REPEAT' FLAG

;READY BAD TX MSG

;REQUEST RIB=EAT OF MS(; AND CLEAR INBUF

0FE00H

BUFFER DEFINITIONS, MUST BE ORG'O IN RAM

;THREE BYTE BUFFER TO HANDSHAKE WITH 8550 DURING FILE TX

;80 BYTE BUFFER FOR RECEIVING TEKHEX FILES

;I/0 FC BLOX (WORKSPACE)

;8550 HANDSHIMKE PROMPT CHAR

;MSG RECEIVED TOKEN

;MSG NOT RECEIVED TCKEN

;CR USED TO TERMINATE PROMPT STRING

;'SLASH' CH#JR USED TO DELIMIT TEKHEX RECORDS

; BEGINNING OF LOADER ROUTINE;

; CONSULT ZMON.DASSY AND .DLI_IPTO DETERMINE ACTUAL ADDRESSES

; BEGINNING OF RCMABLE ROUTINES, ALL JUMPS RELATIVE, ONLY

; RAM REFERENCES ARE ABSOLUTE FOR DURATION OF LOADER OPERATION

FMMSG ASCII 'STD TEKHFX LOADER ' ; NOTE# OF BYTES IN STRING MUST BE EVEN

INTCOM CLR

CLR

LOB

LOB

AOKBUF ;ONLY 3 OF 4 BYTES USED

A(]_vJ3UF+2 ;IN HANDSHAKE SEQUENCE

ACKBUF+I,#RECEND ;READY STRING FOR

ACKBUF+2,#PRCI_T ;TEK HANDSH/M_E

CLR R12
CALR SET IO

NEWSTR CLRB RL2

LD RI0,#80

LD R9,#INBUF
ZAPWRD LD8 R9(RIO),RL2

DEC RI0

JR NZ,Z#PWRO;

OUTMSG LD RI,#TKINAK
SC #0

;FLAG: 0=NEW STRING, I=REP'T OF LAST STRING

;SET UP FC8 FOR INPUT OPERATIONS

;SET UP F(:_3FOR OLrlPUT OPERATIONS

;(R2)=0 FOR ZAPPING

;NUMBER OF BYTES TO BE ZAPPED

;ZERO OUT INBUF (I HCPE..)

;SELECT SIGNAL MODE FOR TEA

;OUTPUT PROMPT VIA MONITOR ROUTINE

121

Z8001/Z8002

(8550)

ASM
VOI .01-01

65

66

67
68

69
70

71
72

73
74

75 00000850 2101FE54 R
76 00000854 7FO0

77 00000856 7608FE04 R
78

79
80
81

82

85

84
85
86

87

88
89

90
91
92

93

94 0000085A 0808FE.54 R

95 0000085E E605
96 00000860 OC812F2F
97 00000864 E606
98 00000866 A980

99 00000868 EEF8
I00 0000086A 4DOBFEO0 R

0037
101 00000870 EBE3
I02
103
104

I05

106 00000872 80C4
107 00000874 EEOI

108 00000876 80D8
109 00000878 DF84
110
]1! 0000087A A980
112

113 0000087C OF97
114 0000087E AO42
115 M

116 00000880 AO2A M

117 00000882 B2A9FCFC M
118 00000886 07020FOF N
119 0000088A 80A2 M

122 0000088C A027

125 0000088E AO46

124 00000890 A980
125 00000892 DFA2.

126 00000894 A0.42
127 M

128 00000896 AO2A M

129 00000898 B2A9FCFC M

130 0000089C 07020FOF M

131 O00008AO 80A2 M

134 000008A2 8027
135 000008A4 AO4E

01-DEC-83/08:48:48

;HCPEFULLY WITH A SE_RIAL LINE DEDICATED TO THE Z8K-TEK INTERFACE

;THERE WON'T BE ANY JUNK BEFORE THE PROMPT AND THE FIRST HEX RECORD.
;UNTIL THAT SERIAL LINE IS ESTABLISHED, WE'LL SHARE THE ONE WITH
;ZSK CONSOLE DEVICE AND PROVIDE FOR GETTING RID OF ANY BAD DATA

;WE MAY HN=PEN TO READ. ONCE A SEPARATE SERIAL LINE IS AVAILABLE, WE CAN
;DISCAR£) THE 'FIND START-OF-RECORD' ROUTINE

;IDLE 8550 BEGINS TO TX AFTER THE F_RCMPT SENT BY OUTMSG

GETSTR LD RI,#-I'KHXIN ;SELECT HE.)(RECORD READ-MODE

SC 40 ;GET HE)(RECORD AND SAVE IT AT INBUF

LDA R8,1NBUF ;SET BASE ADDRESS OF HEX STRING

;AT THIS POINT, WE SHOULD HAVE ONE COMPLETE TEKHEX RECORD FOR PROCESSING

;REGISTER ASSIGnmENTS FOR REDUCING THE ASCII STRING

; RI: TRANSIENT AREA FOR CONSOLE I/0

; R2: WORK AREAS FOR CHECKSUM COMPUTATION

; R3,R4: WOI_K AREAS FOR ASCII HEX CONVERSION

; R5: WORKSPACE FOR FINDING INCOMING ASCII STRING

; R6: CONTAINS THE LOAD ADDRESS OF THE DATA

; RH7: CONTAINS THE NYBBLE CHECKSUMS

; RL7: CONI'AINS THE# OF DATA BYTES IN THE RECORD

; R8: POINTER INTO ASCII STRING FOR HEX GENEFL_TION

; R13: CONTAINS CHECKSUM ERROR COUNT

;FIRST WE'LL SCAN FOR JUNK TI-L_T THE Z8K MAY HAVE READ BEFORE

;THE 8550 STARTED TX OF THE HEX FILE; THIS SECTION CAN BE
;DELETED IF WE DEDICATE A SERIAL PORT FOR 8550/ZBK COMMUNICATION

• 'SLASH' CHR DELIMITS START OF DATA

SEEK _ R8,#INBUF+80

JR EQ,STREQ

CA=I] @R8,#RECMRK

JR EQ,TSTS'FR
INC R8

JR NE,SEEK

STREQ LD AC_<BUF,#NAK

;AT THE END OF THE INPUT BUFFER?

;IF SO, THE WHOLE RECORD WAS JUNK,GET ANOTHER

;SCAN Ii_3UF FOR THE 'SLASH' CHAPJ_CTER

;FOUNDIT!

iON TO THE NEXT CHAR

;HEADER NOT FOUND,TRY AGAIN

;BAD TX,ASK FOR REPEAT OF STRING

JR NEWS'FR ;DO THE ASK IN'

;END OF SOH-SC_NNER ROUTINE

;WE'LL ASSUME TI-_T A VALID RECORD HAS BEEN READ

TSTSTR TEST R12 ;IS THIS NEW OR OLD DATA?

JR NZ,OLDSTR ;DON'T RESET ERROR AC,CUM IF THIS IS A REPEAT

• CLR R13 ;ZERO OUT CKSUM ERROR ACCUMULATOR
OLDSTR CALR CFKTRM ;SEE IF THE RECORD IS THE ZERO-LENGTH TERMINATOR

;IF TERM RECORD IS FOUND, RE-TURN TO MONITOR
INC R8

;(R8)=ADDRESS OF FIRST CHAR IN

CALR ASCHEX

LDB RH2,RH4
NYB SUM

L[]B RL2,RH2

SRAB RIP, #04

AND R2,#OFOFH

ADDB RH2 ,RL2

LDB RH7,RH2

LDB RH6,RH4
INC R8

CALR ASCHEX

LDB RH2 ,RH4
NYB SUM

LDB RL2 ,RH2

SRA8 RL2, #04

AND R2, #OFOFH

ADDB RH2 ,RL2

ADD(=_ RH7 ,RH2

LDB RL6 ,RH4

;MOVE POINTER PAST HEADER TO FIRST ASCII CHARACTER

HE)(STRING

;GET IST BYTE OF ADDRESS

;IST BYTE TO CKSUM ACCUMULATOR

;TRANSPOSE HEX DIGITS

;MAKE HOE) THE LOD

;MASK OFF HO BITS

;ADD NYBBLES W/O CARRY

;TO CHECKSUM ACCUMULATOR

;HOBYTE OF ADDRESS TO R6

;NEXT DIGIT

;GET SECOND BYTE OF LOAD ADDRESS

;2ND BYTE TO CKSUM ACX_UMULATOR

;TRANSPOSE HEr_)(DIGITS

;MAKE HO0 THE LOD

;MASK, OFF HO BITS

;ADD NYBBLES W/O CARRY

;ADD IT TO ACCUM

;LOBYTE TO R6; LOAD ADDRESS IS NOW COMPLETE

122

ASM Z8001/7_8002

VO1.01-01 (8550)

136
137 000008A6 A980

138 OOOO08A8 DFAD
139 O00008AA A042
140 M

141 O00008AC AO2A M
142 O00008AE B2A9FCFC M

143 000008B2 07020FOF M
144 00000886 80A2 M

147 00000888 8027

148 0000088A AO4F

149 O00008BC A980

150 0000088E DFAA

151 000008C0 E609

152 M

153 000008C2 Ago0 M
154 0000080-,4 080D0005 M

155 000008C8 EB25 M

156 O00008CA A5CI M

157 O00008CC 4C05FEO0 MR

3737 M

158 00000802 E882 M

160 00000804 8C78
161 00000806 A980
162 00000808 DFC5
163 O00008DA A042

164 M

165 O00008DC AO2A M

166 O000080E 82A9FCFC M
167 000008E2 07020FOF M

168 000008E6 80A2 M

171 000008E8 8027

172 O00008EA 2E64
173 O00008EC A960

174 O00008EE AAFO
175 O00008FO EEF2
176

177 000008F2 A980
178 000008F4 DFC5

179 000008F6 E609
180 M

181 000008F8 AgO0 M

182 O00008FA 08000005 M
183 O00008FE EBOA M

184 00000900 A5CI M

185 00000902 4C05FEO0 MR

3737 M

186 00000908 E897 M

188 O000090A 4C05FEO0 R

3030

189 00000910 8DC8

190 00000912 E892

191 00000914 2101091C R

192 00000918 7FO0
193 0000091A 7F03
194 0000091C 0200

195 0000091E O000
196 00000920 0924 R

197 00000922 0028
198 00000924 2F2F2020

4552524F
52204C49

411495420

45584345

4 5444544

2C204C4F

41442049

532O4142
4F525445

44

199 00000940 000A

200 0000094F O0

0 I-DEC-83/08:48:48

INC R8

CALR A SCHF.X

LD8 RH2,RH4
NYB SUM

LD8 RL2,RH2

SRAB RL2, #04
AND R2,#OFOFH
ADD8 RH2 ,RL2

AODB RH7 ,RH2

LDB RL7 ,RH4
I NC R8

CALR CF_SUM

JR EQ, SUMOK

ERRMSG

INC RI 3

(SP R13,#5

JR UGT,ABRTLD

SET R12,#01

LD8 ACKBUF, #NAY,

SUMOK

HXLOAD

JR NEWSTR

CLRB RH7

IN(] R8

CALR ASCHEX

LDB RH2,RH4

NYB SUM

LD8 RL2, RH2

SRAB RL2, @04

AND R2, #OFOFH

ADD8 RH2,RL2

ADD8 RH7 ,RH2

LD8 @R6 ,RH4
IN(] R6

DECB RL7

JR NE,HXLOAD

;RECORD LOAD COMPLETE
INC R8

CALR CHKSUM

JR EQ,GOOORX

ERRMSG

INC R13

CP R13,@5

JR UGT,ABRTLD

SET R12,@01

LD8 ACKBUF,#NAK

JR NEWSTR

GOOOR, X LD8 ACKBUF, #ACK

CLR R12

JR NEWSTR

ABRTLD LD RI,#MSGBLK
SC @0
SC #3

MSGBLK WORD 0200H

WORD O000H

WORD ENDMSG

WORD LSTCHR-ENDMSG

ENDMSG ASCII '//

;ON TO THE BYTE COUNT

;GET# OF BYTES IN MSG

;ADD IT TO CHKSUM

;TRANSPOSE HEX DIGITS

;MAKE HOD THE LOD

;MASK OFF HO BITS

;ADO NYBBLES W/O CARRY

;ADD RUNNING NYBBLE CHECKSUM

;SAVE# OF DATA BYTES IN HEY, FOR RAM LOAD

;GET CHAR CNT FROM STRING

;TEST IST BYTE-K_HECKSUM

;NO PROBS,GO ON

;COUNT NEW ERROR OCCURRENCE

;REACH MAX# OF ERRORS?

;TO0 MANY ERRORS- RETURN TO MONITOR

;SET 'OLD STRING, REPEAT' FLAG

;READY BAD TX MSG

;REQUEST REPEAT OF MSG AND CLEAR INBUF

;RESET ACCUMULATOR FOR FOR SECOND CHECKSUM

;NXT CHR

;FORM DATA BYTE

;SENT TO CKSUM ACCUM

;TRANSPOSE HEX DIGITS

;MAKE HOD THE LOO

;MASK OFF HO BITS

;ADD NYBBLES W/O CAPJRY

;ANOTHER DIGIT TO BE SUMMED

;STORE MACHINE CODE

;NEXT RAM LOCATION...

;ONE LESS BYTE TO STORE

;UNTIL (RL7)=O, STORE THEM BYTES!

;PRODUCE AND COMPARE SECOND BYTE-CHECKSUM

;NO ERRORS

;COUNT NEW ERROR OCCURRENCE

;REACH MAX@ OF ERRORS?

;TO() MANY ERRORS- RETURN TO MONITOR

;SET 'OLD STRING, REPEAT' FLAG

;READY BAD l'X MSG

;REQUEST REPEAT OF MSG AND CLEAR INBUF

;SET ACKNOWLEGE TOKEN

;CLEAR FLAG FOR A NEW STRING

;SEND IT TO THE 8550

;READY ERROR MSG FOR TX TO TEK CONSOLE

;SEND IT OUT

;RETURN TO Z8000 MONITOR

;TX MODE FOR SC#O

;NOT USED

;ADDRESS OF ERROR MSG

;# OF CHARS IN STRING TO BE TX'D

ERROR LIMIT EXCEEDED, LOAD IS ABORTED' ;SELF-EXPLANATORY

CRLF BYTE OOH,OAH

LSTCHR BYTE 0

123

ASH Z8001/Z8002

V01.01-01 (8550)

202

203
204

2O5
206

207
208 00000950 208C

209 00000952 DFD3
210 00000954 060COFOF
211 00000958 82C90404
212 0000095C AOC4

213 0000095E A980
214 00000960 208C
215 00000962 DFDB
216 00000964 060COFOF

217 00000968 84C4

218 0000096A 9E08

219

22O

221

222

223

224

225 0000096C DOOF

226 0000096E 8A47

227 00000970 9E08

228

229

23O

231

232

233

234

235 00000972 AI8A

236 00000974 A984

237 00000976 D014

238 00000978 AIA8

239 0000097A 8C,44

240 0000097C 9EOE
241

242 0000097E 4DO5FEO0 R
0030

243 00000984 2101FE5C R

244 00000988 7FO0

245 0000098A 7F03

246

247 0000098C 210AFE54 R

248 00000990 2108099E R

249 00000994 21090008
250 00000998 BBBIO9AO
251 0000099C 9E08
252 0000099E 0100

253 O00009AO 0000
254 000009A2 FE04 R
255 000009A4 0050

256
257 000009A6 0200
258 000009A8 0000
259 O00009AA FEO0 R

260 O00009AC 0003
261
262

263 O00009AE 0AOC3939
264 000009B2 E202
265 00000984 000C0909

266 00000988 9E08
267

268 00000820

01--DEC-83/08:48:48

;END OF MAIN ROUTINE; HERE ARE THE SUBROUTINES...

;ASCHEX: THE ASCII CHARACTERS WHOSE ADDRESSES ARE (R8) AND (R8)+I ARE

;CONSOLIDATED TO FORM ONE HEXADECIMAL BY-rE. _ AND R4 ARE THE WOPJ< SPACE WITH

;THE FORMED HEX BYTE LEFT IN RH4.

ASCHEX LD8 RL4,@R8 ;GET IST ASCII CHARACTER

CALR TSTNLIM ;ADJUST ASCII IF CHR IS A-F

AN[]8 RL4,#OFH ;MASK OFF ZONE 81TS

SLAB RL4,#04 ;LSBITS BECOME MSBITS

LI]8 RH4,RL4 ;READY FOR I'_(TDIGIT

INC R8 ;NEXT DIGIT

LD8 RL4,@R8 ;GET IT

CALR TSTNI]'4 ;ADJUST ASCII IF CHR IS A-F

ANDB RL4,#OFH ;PROCESS IT

ORB RII4,RL4 ;FORM COMPLETE BYTE OF DATA

RET ;GO HCt_IE

;CI_KSUM: COMPARE THE CCMPUTED CHECKSUM WITH THE VALUE CONTAINED IN THE

;STRING TPJ_NSMII-I'ED FO_M THE 8550. RUNNING CHECKSUM IS MAINTAINED IN

;RH7. THIS ROUTINE CALLS ASCHEX TO READ THE ASCII STRING AND GEN THE

;TX CHECKSUM.

CHKSUM CALR ASCHEX ;GET IST BYTE-CHECKSUM

CPB RH7,RI-14 ;COMPARE CALCULATED AND GIVEN CHECKSUMS

EXIT RE F ;REQUEST ANOTHER TX OF THE STRING IF NEEDED

;CHKTP.M: SCANS THE INPUT BUFFER FOR A BYTE COUNT OF ZERO. USES ASCHEX

;TRANSLATE THE TWO ASCII CHAPJ_CTERS OF THE DATA COUNT TO HE X. IF THE

;BYTE COUNT IS ZERO,THE LOAD IS CONCLUDED WITHOUT A CHECKSUM SCAN AND CONTROL

;IS RETURNED TO THE MONITOR

;ENTER WITH (R8)= LOCATION OF IST CHAR IN LOAD ADDRESS

CHKTRM LD RIO,R8 ;SAVE CURRENT POSITION IN STRING

IN(] R8,#5 ;AIM AT IST CHR OF BYTE COUNT

CALR ASCHEX ;FORM BYTE COUNT

LD R8,RIO ;RECOVER ORIGINAL POINTER

TESIB RIP, ;IS DATA STRING LENGTH ZERO?

RET NE ;NO, GO BACJ< AND FINISH PROCESSING

;AT THIS POINT, WHO CARES ABOUT A BIT-ERROR?

LD ACKBUF,#ACK ;SIGNAL THE END

LD RI,#'rKINAK ;READY THE MSG
SC _0 ;SIGNAL TRANSFER END TO HOST CO_UTER

SC #3 ;LOAD COMPLETED, RE-TURN TO MONITOR

;SET IO: USED TO RESET FC8 FOR SC#O

SET IO LD RIO,#IKHXIN ;DEST FoR MOVE

LD RII,#ICBLK ;SOURCE FOR MOVE

LD R9,#O8H ; _ OF WORDS TO MOVE

WMOVE LDIR @RIO,@RII,R9 ;DO IT!

RET ;GO HOME..

IOBLK WORD 0100H ;BLOCK RECEIVE MODE OF MONITOR CONSOLE HANDLER

WORD O000H ;NOT USED

WORD INBUF ;IM3UF BUFFER LOCATION

WORD O050H ;STRING LENOTH IS 80 DECIMAL BYTES TO ALLOW FOR JUNK

WOPJ] 0200H ;BL(X]K TRANSMIT MODE FOR SYSTEM CALL #0

WORD O000H ;NOT USED

WORD ACKBUF ;START ADDRESS OF PR(]MPT-ACKNOWLEGE BUFFER

WORD O003H ;ONE BYTE FOR F'RDMPT,ONE FOR AC'K-N,_J<TOKEN,ONE FOR EOL TDKEN

; TSTNUM: CORRECTS ASCII CHARACTERS FRC_I A TO F TO ALLOW FOR SIMPLE

; MANIPULATION TO HEX FOPJ4

TSTNUM CPB RL4,#39H

JR LE, ISNUM ;IF 0-9, NO CORRECTION NEEDED
ADD8 RL4,#9 ;ELSE ADO OFFSET OF 9 TO PRODUCE USEABLE LO NYBBLE

ISNLIM RE I" ;BACK TO ASCHEX

;end of loader and subroutines
END INTCOM; PROGRAN START ADDRESS FOR ASSEMBLER

124

ASbl Z800I/Z8002 SYMBOL TABLE

VO1.01-01 (8550) 01_EC-83/08:48:48

Sca lars

ACK 00000030 NAK 00000057 PROMPT

REC._RK O000002F

Strings & N_acros

EPJRMSG M NYB SUM M

Section = %BMLLOA£), Inpage Relocatable, Size = O000FE64

ABRTLD 00000914 ACKBUF O000FEO0 ASCHEX

CHKTRM 00000972 CRLF 00000940 ENDMS_

GETSTR ,00000850 GOODRX O000090A HXLOAB

INTCOM 00000820 IOBLK 0000099E ISNUM

MS(_3LK ,0000091C NEWSI_R- 00000838 OLDSllR-

SEEK. 0000085A SETIO 0000098C STREQ

TKHXIN O000FE54 TKINAK -O000FESC TMMSG

TSTSTR ,00000872 WMOVE 00000998 ZAPWRD

O000003E RECEND 00000000

230 Lines Read
268 Lines Processed

0 Errors

00000950 CHKSUM '-0000096C
00000924 EXIT '00000970

00000806 I_UF O000FE04

000009B8 LSTCHR. '0000094F

,00000878 OUTM_ '0000084A

0000086A SUMOK '00000804

O000080E TSTNUM. 'O00009AE

00000842

125

APPENDIX B

I: /*

2: -

3: - BUSLODR.C:

4: -

5: -

6: -AUTHOR: S. NOVACKI

7: - CREATED: JULY, 1984

8: -

9: */

i0:

11 : #include "b:stdio.h"

12: #define ACK '0'

13: #define NAK '7'

14: #define CR 13

15: #define TX RDY 0x01

16 : #define RX RDY 0x02

17: #define CO--MM DATA 0x58

18: #define COMM STAT 0x59

19:

20 : /*

21 : infile:

LISTING 2

8550 DOWNLOAD EMULATOR FOR DEC VT-180

WRITTEN IN AZTEC C FOR THE CP/M ENVIRONMENT

/* standard I/O used for file handling */

/* definitions of: the ACK token */

/* the NAK token */

/* end-of-line flag */

/* UART transmitter ready flag bit */

/* receiver ready bit */

/* UART data register port number */

/* status register port number */

22: pointer for source file (from disk)

23: numchar:

24: subscript for reading characters from disk file into buffer vector

25: outptr:

26: subscript for sending buffer characters to UART

27: argc:

28: command line argument count, used by "C" console processor

29: errcount:

30: number of consecutive reception errors

31: iolinebuffer:

32: array used in moving characters from disk file using standard

33: I/O to UART using system-specific hardware

34: reply:

35: token read from BusMon system to indicate quality of message

36: tx__stat, rx star:

37: UART--register statuses used during character-send procedure

38:

39: */

40:

41: FILE *infile,*fopen();

42: int numchar,outptr,argc,errcount = 0;

43: char iolinebuffer[80],reply,tx_stat,rx star;
44:

45: ***
46:

47: main(argc,argv)

48: char *argv[];

49:

50: {
51:

52: /*

126

53: open disk file to be sent to the BUSMON system

54: if a NULL is returned, OPEN has failed, exit to CP/M
55 : */

56: if ((infile = fopen(*++argv, "r"))== NULL) {

57: printf("open failure on f$1e %s\,n'',*argv); exit(99);

58:

59:

60: while () { /* a DO-ALWAYS loop, a la BASIC */

61: get reply(); /* get first ACK to commence file transmission */

62: get_line(); /* read a line from the TEKHEX disk file */
63:

64 : #ASM

65: /* after reading a line from the disk file, kill IRQs for */

66: DI /* polled serial I/0 for both the record output */

67: /* and the REPLY input */

68 : #ENDASM

69:

70: tx line(); /* send record to waiting BusMon unit */

71: get_reply() ;

72: errcount == 0; /* zero error count for each record being sent */

73: while (reply != ACK) { /* if NAK is received: */

74: retrans record();

75 : get_reply() ;

76: }

77:1
78:

79 : #ASM

80 :

81: E1 /* bring back IRQs for BDOS/BIOS disk I/O routines */

82:

83 : #ENDASM

84:

85: 1
86:

87 : ***

88:

89 : get_line()

90: /* function to read <=80 character from the TEKHEX disk file */

91: {

92: for (numchar =I; numchar <= 80; ++numchar) { /* for numchar = 1 to 80 */

93: iolinebuffer[numchar] = getc(infile); /* read from infile to

94: the line buffer */

95: if (iolinebuffer[numchar] == EOF) { /*have we reached the end? */
96: fclose(infile); /* if so, close the disk file */

97: exit(0); /* and back to CP/M... */
98:

99 :

i00:

i01 : 1
102:

103 : ***

104:

if (iolinebuffer[numchar] == CR) break; /* if a CR, exit from the read

} routine and move on */

127

105: tx line()

106: /* function to send a character at a time to the 8251A UART */

107 : t
108: * send all the chars in the line buffer to the 8251A */

109: for (outptr =I; outptr <= numchar; ++outptr) {

II0: /* idle until UART transmitter is ready */

III: while (((tx_stat = in(COMM_STAT)) aa TX_RDY) != TX_RDY) {}

112: out(COMM_DATA,iolineDuffer[outptr]); /* send out the character */

113: 1

114: }
115:

116 : ***

117:

118: get_reply()

119: /* receives reply token from the BusMon unit after tx line is performed */

120 : {

121: while (((rx_stat = in(COMM_STAT)) && RX_RDY) I= RX_RDY) {}

122: /* idle until UART receiver is ready */

123 : reply = in(COMM DATA); /* get ACK/NAK token */

124: if (reply != ACK) {

125: if (++errcount > 5) load error(); /* if too many errors, exit */

126: }

127 : }

128:

129 : ***

130:

131: retrans record()

132: /* tx line by another name, done for improved legibility

133: /* since numchar is not destroyed by tx_line, this offers a very convenient

134: /* way to retransmit the same line of characters */

135 : {

136: tx__line();

137 : }

138:

139 : ***

140 :

141 : load__error()

142: /* only if five successive load errors are reported by the BusMon */

143 : {
144 :

145: /* E1 /* restore IRQs for standard I/O functions */

146:

147: printf("error limit exceeded, load operation, aborted\n");

148: fclose(infile); /* close the disk file */

149: exit(88); /* return to CP/M with error code 88 */

150 : }

151:

128

L

APPENDIX C

LISTING 3

ASM Z8001/Z8002
V01.01-01 (8550)

I 4000 R

2 00004000 21007ASA GO

3 00004004 3A060006

4 00004008 3A860006

3 0000400C C827

6 O000400E 3A860007

7

8 ;RIO:
9 ; R11:

10 ; R12:
11
12 ; NOTE:
13
14
15

16
17 00004012 A1A9 INIT

18 00004014 81C9
19 00004016 2098 MOVE
20 00004018 A083
21 0000401A 0703FOOF
22 0000401E 8231FCFC

25 00004022 0A050909

24 00004026 E302
25 00004028 00050707
26 0000402C 0(3033030 NOTHX
27 00004050 A03C
28 00004052 DFF5
29 00004054 0A080909
30 00004058 E302
31 0000403A 00080707

32 0000403E 00085030 NOTHX2
33 00004042 AOBC

34 00004044 DFFC

35 00004046 A991

56 00004048 8889

57 0000404A ESE3

38 0000404C E8E2

59

40 0000404E 3AE40005 PUTCHR
41 00004032 A760
42 00004054 E6FC

43 00004036 3AC60004
44 0000403A 9E08
45 4000

Page I
30-NOV-83/12:00:49

ORG 4000H

LD RO,#7A3AH ;SET UP UART FOR 2400 BAUD,

OUTB O006HjRHO ;EVEN PARITY, I STOP BIT

OUTB O006H,RLO ;7 DATA BITS ON 6SI0

LDB RLO,@27H ;'B' SERIAL PORT TO DUMP

OUTB O007H,RLO ;BYTES TO THE PROLOG

START ADDRESS (BYTE BOUNDARY) OF PROGRAM TO BE SENT TO PROLOG

END ADDRESS (B_rE BOUNDARY) OF PROGRAM

(>=FOR EVEN NUMBERED BYTES, I FOR ODD NUMBERED BYTES

PLEASE RECALL THAT THE EVEN 8_'[ES ARE LOW ORDER ADDRESSES BUT

ARE ACTUALLY THE HIGH ORDER DATA BYTE. PLEASE REMEMBER THIS WHEN

YOU USE THE NOTATION 'HIGH ORDER BYTE' WHEN DETERMINING WHICH

PROM YOU ARE PROGRAt4MING

LD R9,RIO

ADD R9,R12

LD8 RL3, @R9

LDB RH3 ,RL3

AND R3 ,#OFOOFH

SRLB RH3,44

CPB RH3,#9

JR ULE,NOTHX

ADDB RH3,#7

ADDB RH3,#30H

LDB RL4,RH3
CALR PUTC_rlR

CPB RLS,#9

JR ULE,NOTHX2

ADDB RL3,_7

ADDB RL3,q30H

LDB RL4,RL3

CALR PUTCHR

I NC R9,#2
CP R9,Rll

JR ULE,MOVE
JR INIT

INB RL6,0OO5H

BIT R6,_/O

JR Z ,PUTCHR

OUTB O004H,RL4
RET

END GO

;USE R9 AS WORKSPACE, SAVE RIO FOR NXT LOAD

;SET EVEN/ODD ADDRESSES TO BE DUMPED

;GET DATUM

;COPY DATUM TO WORK ON EACH NYBBLE

;ISOLATE EACH NYBBLE

;REDUCE HO DIGIT TO HE)(DIGIT

;IS DIGIT DECIMAL OR HEX??

;IF DECIMAL, NO OFFSET NEEDED

;IF HEX, ADD 7 TO PUSH ASCII CODE TO ALPHA

;IN ANY EVENT, ADD ZONE BITS TO MAKE ASCII CHAR

;MOVE FOR OUTPUT TO PROLOG

;SEND IT OUT
;SAME AS ABOVE

;THIS TIME FOR LO NYBBLE

;SAME OFFSET

;SAME ZONE BITS

;PUT LETTER IN THE MAILBOX

;HERE COMES THE POSTMAN

;MOVE TO NEXT BYTE OF THE PROGRAM

;AT THE END OF THE PROGRAM?

;IF NOT, GET ANOTHER BYTE!!

;BREAKPOINT SET TO STALL HERE, THEN

; GO TO INIT FOR NEXT PROM

;GET STATUS BITS

;IS UART STILL BUSY?

;IF SO, WAIT UNTIL CHAR IS SENT...

;SEND DATUM TO THE B-PORT
;BACK TO MAIN PROG

;THAT'S ALL FOLKS!!I

ASM Z800I/Z8002 SYMBOL TABLE

VOI.OI-01 (8550) 30-NOV-83/12:00:49

Section = %PROLOADLOAD, Inpage Relocatable, Size = 0000405C

GO................ 00004000 INIT 00004012 MOVE 00004016

NOTHX2 0000403E PUTCHR 0000404E

45 Lines Read

45 Lines Processed

0 Errors

NOTHX 0000402C

129

